Cancer testis antigen burden: pan-cancer distribution and survival implications

R. J. Seager^{1,*}, Erik Van Roey¹, Shuang Gao¹, Blake Burgher¹, Paul DePietro¹, Mary Nesline¹, Roger Klein¹, Shengle Zhang¹, Jeffrey M. Conroy^{1,2}, Sarabjot Pabla¹ ¹Omniseq Inc., 700 Ellicott Street, Buffalo, NY 14203, US *now part of* **Oliver** Oncology ² Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, US

Purpose of Study

Cancer testis antigens (CTA) are highly immunogenic genes with the ability to cause cancerspecific immune responses when expressed. Their tumor cell-specific expression makes them a key target of natural T cell response, cancer vaccines, immune checkpoint blockade (ICB), and cell-based immunotherapies in a wide range of tumor types. In this study, we assess the pancancer distribution and ICB survival association of CTA burden (CTAB) in real-world solid tumors.

Procedure

- Three tumor sample cohorts were studied:
 - 1. A pan-cancer discovery cohort to develop a low- and high-CTAB cutoff (n=5450, 39 tumor types) [1]
 - 2. A TCGA cohort (n=19923, 32 tumor types) used to validate the classifier based on CTAB distribution and serve as a non-ICB-treated population [2]
 - 3. An ICB-treated retrospective cohort to validate the classification on overall survival (OS) (n=242, 3 tumor types) [3]
- The expression levels of 17 CTA were measured using targeted RNA-Seq of FFPE tumor samples and then ranked against a pan-cancer reference population (Figure 1).
- CTAB was calculated for each sample, cohort and tumor type as the sum of the 17 CTA gene expression ranks.
- The discovery cohort median CTAB of 171 was used to classify all three cohorts into high- and low-CTAB groups.
- OS analysis was performed on the TCGA and ICB-treated cohorts using a CoxPH regression model to determine the Hazard Ratio (HR).

		Step		Description		
		Ranked	Gene Expression (GEX) Rank	For each gene, GEX rank is calculated as against a reference population of 735 to transcript (t):		
				$Rank(t) = 100 x^{\frac{\# of samples in reference}{735}}$		
	Gene Expression Rank	alized	Normalized Reads Per Million	nRPM _(t) = Background subtracted absolution ration rati		
		Aorma 3		Where Normalization ratio = Background subtracted abs read count		
		2		Pre-defined reads per million profile o		
				For each transcript (t),		
		Ra S	Background subtracted Absolute read Count	Background subtracted Absolute read Contracted Absolute read Conts(t) – Contracted Conts(t) – Conts from NTC (t))		
		Rak 1	Absolute Read Count	RNA-seq absolute reads for each transcr with Torrent Suite's plugin immuneResp		
		ro 1. El	ow chart chowing calcu	ulation of gone overacion normalized		

Figure 1: Flow chart showing calculation of gene expression normalized reads per million (nRPM) from raw absolute read count values in the discovery cohort [1].

nRPM percentile umors. Rank for

ce pop. < nRPM(t)

ite read count_(t)

of house keeping genes of house keeping genes

Count = absolute read

ript (t) were generated onseRNA.

Results

Table 1: Cohort CTAB composition.							
			N Positive	N Negative			
Cohort	Ν	Median CTAB	(CTAB≥171)	(CTAB<171)			
Discovery	5634	170	2806	2828			
TCGA	19923	254	6413	2860			
Retrospective	242	256	148	94			

The three cohorts demonstrated overlapping single-peak, left-skewed CTAB distribution curves (Figure 2) centered at CTAB values between 170 (discovery cohort) and 256 (retrospective cohort).

When grouping by tumor types and ordering by median CTAB, the CTAB distributions for tumor types within all three cohorts were comparable (Figure 3).

Kaplan-Meier survival analysis revealed a strong association (p<0.000) between positive CTAB status and worse survival in the TCGA cohort (Figure 5). This association did not exist in the retrospective cohort (p=0.64), though positive CTAB status trended toward better survival. This difference suggests that advances in immunotherapy targeting CTA have largely eliminated the survival disbenefit observed in the pre-immunotherapy TCGA cohort.

Figure 5: Kaplan-Meier survival analyses comparing CTAB positive (>=171) and negative (<171) groups for A) TCGA and B) retrospective cohorts.

Conclusions

- Our studies show that the CTAB distribution was maintained across the discovery and TCGA cohorts and a wide range of tumor types, supporting that the CTAB classifier is valid and histology agnostic.
- Additionally, when evaluating the ICB and non-ICB-treated cohorts, CTAB demonstrated the ability to predict OS, pointing to the utility
- However, further studies are necessary to verify these mechanisms of response to ICB as well as cancer vaccines and cell-based
- Additional validation is needed to establish the predictive utility of CTAB alone and in combination with other immune oncology

- 1. Conroy JM, Pabla S, Glenn ST, et al. Analytical validation of a nextgeneration sequencing assay to monitor immune responses in solid
- 2. Cancer Genome Atlas Research Network. Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Sarcomas. Cell.
- 3. Pabla S, Seager RJ, Van Roey E, et al. Integration of tumor inflammation, cell proliferation, and traditional biomarkers improves prediction of immunotherapy resistance and response.